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I. INTRODUCTION

The problem of the excessive computational requirements of the

Kalman filter has been studied extensively in recent years. For most

practical applications, a solution of this problem is the critical fac-

tor in deciding whether or not the filter can be implemented in an

operational system.

The problem becomes more acute in the case of a delayed-state

Kalman filter due to the increased complexity of the filter equations

introduced by accounting for the connection of the measurement with the

previous state.

One approach to the solution of the computational problem has

been to reduce the dimension of the state and estimate only those state

variables that are of prime interest; see Levy [14], Schmidt and

Lukesh [25], Simon and Stubberud 127]. The state variables often ne-

glected in this reduced filter method are the correlated noise processes

in the system. They are, in effect, modeled as uncorrelated noise

processes when this method is used. Although optimal, the method pro-

posed by Simon and Stubberud [273 is subject to the restriction that the

reduction in the dimension cf the state is limited by the dimension of

the measuremert vector.

In another approach, Aoki and Huddle [3] constructed a so-called

minimal order observer, utilizing the observer theory of Luenberger [15J1

which was composed of two distinct sections. The first represented a
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dynamiic subsystem of the observed system whose output, under proper con-

ditions, was a linear transformat Lon of the observed system state vector.

An estimate of the observed system state vector was constructed by mini-

mizing the elenents of the esti-ation error covariance matrix. The

method requires proper specifV ation of several matrices for the

steady-state condition of t'-e filter.

Brock and Schmidt [4] proposed using preset or precomputed gains

based upon the high and low frequency response of the system in an iner-

tial navigatiun application. Sims and Melsa [29] investigated the

effect of using constant and exponential gain functions, wbich could be

precomputed, based on the results of simulation studies. Precomputation

of gains Fuffers from the requirement of a priori knowledge of the sys-

tem's behavior in order to predict adequately the form the gain should

take.

The method to be applied here to the delayed-state filter case

is due to Joseph [12] and was formalized by Pentecost [22]. The advan-

tage of this method is that the computational requirements are signifi-

cantly reduced, by partitioning of the system into lower dimensional

subsystems, with only minimum a priori knowledge of the system's behav-

ior; i.e., the gains are computed on-line.

The degradation in the performance of a continuous Kalman filter

introduced by the use of a continuous reduced-order filter has been

studied by Huddle and Wismer [11] Nishimura [16] performed a sensitiv-

ity analysis on the continuous Kalman filter performance for inaccuracies
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in the specification of the noise covariance matrices and of the initial

state covariance matrix.

Griffin and Sage [9] studied the continuous and discrete Kalman

filter and the continuous smoothing equations for sensitivity to

modeling and noise covariance matrix errors analogous to our method for

studying the performance of a suboptimal discrete-time delayed-state

filter due to simplified modeling. Large and small scale sensitivity

indices were defined also, which are not useful for our situation as

they are only practical for a small number of parameter changes.

Heffes [10] studied the sensitivity of the gain computation to

modeling errors in the discrete Kalman filter and Sorensen [29] deter-

mined bounds on the estimation error covariance matrix of the optimal

Kalman filter.

Price [24] derived the recursive equations for the suboptimal

estimation error covariance matrix of the discrete-time Kalman filter

using a perturbed model by a method equivalent to the one used here

for the delayed-state filter. He then determined bounds on the su5-

optimal estimation error covariance matrix and conditions on the modet

changes under which it was asymptotically stable in the large, using

Lyapunov theory techniques. The determination of such bounds and con-

ditions for stability are not considered here for the delayed-state

filter. A method similar to Price's could be used for such a purpose,

We here derive expressions for the estimation error covariance

matrix for suboptimizations of the delayed-state filter bascU on



modeling simplifications and alternate gain computations which place

less stringent computational requirements on the system computer than

does the optimal filter.

A method based upon the work of Pentecost [223 is presented for

the reduction of computational requirements of the delayed-state filter.

A performance index is defined for use as a relative measure of

the performance of the various suboptimizations compared to the optimal

filter. The results of a simulation of an integrated inertial navigation

system are presented as an application of the theoretical results.
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II. THE DELAYED-STATE KALMAN FILTER

As previously noted, measurements which are linearly connected to

not only the present state but the previous state as well require a

modification of the usual Kalman equations. This was first done by

Brown and Hartaan 7]. The purpose of this chapter is to summarize

the resulting eq,.ation. and introduce the notation that will be used

in the sequel. The derivation of the equations will be presented in

the appendix.

The random process to be estimated is assumed to be a linear system

satisfying the vector differential equation

k(t) = A(t)x(t) + B(t)w(t) (2.1)

where x(t) is the n-dimensional state vector at time t, A(t) is an nxn

time-varying matrix at time t, w(t) is a p-dimensional white noise

input vector, and B(t) is the nxp time-varying matrix which connects

the input to the state at time t.

Solution of (2.1) results in, for the discrete-time case,

x(k+l) = (k+l,k)x(k) + u(k) (2.2)

where l(k+l,k) is the nxn state transition matrix from stage k to stage

k+l, and {u(k)1, the plant noise, is a white noise sequence of n-dimen-

sional vectors.
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The measurement model is assumed to be of the form

y(k+l) = M(k+l)x(k+l) + N(k+l)x(k) + v(k+l) (2.3)

where y(k+l) is an m-dimensional measurement vector, M(k+l) is an mxn

time-varying matrix which linearly connects the present state to the

measurement, N(k+l) is an mxn time-varying matrix which linearly connects

the previous state to the measurement, and {v(k+l)} is an r-dimensional

white noise sequence, thp measurement noise.

The following statistical properties of the system (2.2),(2.3) are

assumed:

1) {x (k),k = , .. and {Y (i),) = 1l,2,.. 1are gaussian with zero

means.

2) iu(k),k = 0,1,...} and {v(j),j = 1,29...I are independent gaus-

sian white noise with zero mean.

3) Efx (j)u'(k)}I = 0 tor all k 'a j, j = 0,1,..., where E{. indi-

cates the expectation operator and the prime denotes the trans-

pose.

4) E (j)u'(k) = 0 for all k Z j + 1, j = 0,1,...

5) E (j)v'(k) = 0 for all j,k, j = 0,1,..., k = 1.2,...

6) E (j)v'(k) = 0 for al* k > j + i, j = 1,2,...

7) E v(j)v'(k) = V(k)6jk, j,k = 1,2,..., where 6jk is the Kronecker

delta function and V(k) is a positive semidefinite mxm matrix.

8) E~u(j)u'(k)} = H(k)6jk, j,k = 0,1,..., where H(k) is a positive

semidefinite nxn matrix.
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The recursive equations for estimating the state of the model (2.2)-

(2.3) at stage k can be sumarized from Brown and Hartman as

Q(k) = M(k)P(kjk-l)M' (k) + V(k) + N(k)P(k-llk-l)N' (k)

" M(k) (Gz,k,-l)P(k-ljk-l)N' (k)

" [M(k) (k,k-lwP(k-ljk-l)N' (k)1' (2.4)

K(k) = [P(klk-l)M'(k) + (k,k-l)P(k-ljk-l)N'(k)3Q 1 (k) (2.5)

P(klk) = P(k 1k-i) - K(k)Q(k)K' (k) (2.6)

x(klk) =X'(klk-l) + K(k)[y~k) - M(k)x'(kjk-l) - N(k)X'k-l 1k-i)1
(2.7)

A A
x(k+llk) = §(k+l,k)x(klk) (2.8)

P(k+llk) = §(k+l,k)P(klk)§'(I+].,k) + H(k) (2.9)

where x(k jk) is the optimal estimate of the stage ant stage k givenL

A
measurements through stage k and x(k+llk) is the optimal estimate of

the state at stage k+1 given measurements through only stage k. K(k)

is the optimal gain matrix at stage k. P(klk) is the covariance matrix

of the estimation error Z(klk) = Ix(k) _ X(kjk)] and P(k+llk) is the

covariance matrix of the estimation error Z(k+lik) = xk] (k+llk)].

Q(k) is the covariance matrix of tb-- measurement estimation error

y(klk-l) = [y(k) _ A (klk-1)].

These recursive equations uniquely specify a solution at any time

10) , Ani(given the initial conditions, P(OO) an 1(0I). A block diagram
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indicating the structure of the delayed-state filter is shown in Fig. 1,

where the double lines denote vector signals and the blocks denote ma-

trix operations.
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III. PERFORMANCE ANALYSIS OF THE DELAYED-STATE FILTER

When an analysis on a dynamical system is performed for which the

estimate of the state variables will ultimately be required, the ques-

tion arises as to how complete the model must be to adequately predict

the behavior of the system and yet result in computationally efficient

estimation algorithms. As an aid in performing such an analysis, it is

useful -to have an algorithm for determining the degradation in perfor-

mance incurred in using a simplified model of the system dynamics.

Also, since the gain computation in the Kalman filter places the

most severe requirements on the computational abilities of the computer

in an operational system, it is sometimes desirable to use suboptimal

gains which are easier to compute. Thus, it is desirable to have an

algorithm to evaluate the degradation of the estimates as compared to

those estimates achieved with the optimal gain computation.

The purpose of this chapter is to derive algorithms which accom-

plish both of the above purposes. The method of attack for the simpli-

fied model case is analogous to, but different than, the method used

by Price [24]. For use as a figure of merit for the various models and

suboptimal filters that may be used, a performance index will be defined.

The effect of modeling differences in the noise covariances are not in-

cluded here but could easily be included by suitable modification of the

equations that follow.



A. Performance Analysis of a Suboptimal Filter Using

A Simplified Model

Suppose that a change is made in the modeling of the system dynam-

ics for some reason, such as reducing small terms to zero or making

simplifying asstumptions which result in changes in some terms or reducing

the number of state variables. The result is a perturbation in the

A(t) matrix of the system modei (2.1)-(2.3) which introduces a perturba-

tion in the filter equations, (2.4)-(2.9). If the original model is

assumed to be the most complete and correct one possible, it will re-

sult in optimal estimates by the filter. Thus, if the model is

changed or simplified, suboptimal estimates will result. We will call

this model the design model.

Let the original system model be described by (from chapter II)

x(k+l) = (k+l,k)x(k) + u(k)
(3.1)

y(k+l) = M(k+l)x(k+l) + N(k+l)x(k) + v(k+l)

and the design system model by

xd(k+l) =d (k+l,k) xd (k) + u(k) (3.2)

Yd(k+l) = M(k+l)xd(k+l) + N(k+l)xd(k) + v(k+l)

where d= + 6 . The perturbation in the original system transition

matrix 6 results from computing the transition matrix 4d using the

design system model, A(t) + 6A(t). In general, there is no simple rela-

tionship between 6A(t) and 6&(k+l,k) and one must compute both
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transition matrices to get the value of (k+l,k) at any stage k.

By using the design system model in the optimal filter equations,

A
we obtain an optimal estimate xd of Xd, if Yd were the available mea-

surement. The estimation error covariance matrix for estimating xd

given yd is

Pd (kIk) = E{[Id(k) xd(klklxd(k) x d (kIk)] }(3.3)

We :ish to use the gain obtained from the design system optimal

filter and the design system transition matrix to obtain a (suboptimal)

estimate of x. The estimator is of the form

A A

x 5 (klk) = x (klk-l) + Kd(k)[y(k) - Yd(k k-l)]. (3.4)

The only difference between this estimator and the one for the optimal

filter for the design system is that y is used instead of yd since yd is

A A
not physically available. xs (kik-l) is computed as §d(kk-l)x (k-lIk-l).

The Pd used in computing Kd is not the estimation error covariance

matrix for the suboptimal filter, but is the estimation error covariance

matrix for estimating xd. The estimation error covariance matrix for

the optimal filter for the original system, where § and y are used in

the filter equations of chapter II, is

P(klk) = E {x(k) - x(klk)][x(k) - x(kjk)]-. (3.5)

The estimation error covariance matrix for the suboptimal filter, using
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Sin the optimal gain computation and in the estimator with y, is
d

P s(klk) = E{IIx(k) _ x s(kjk)3[rx(k) _ x S(klk)]} (3.6)

To evaluate any degradation in performance, we wish to compare P and P

Thus an expression for P sis required. The relationship between the

filters mentioned above is represented schematically in Fig. 2.

In order to evaluate P S3 we note the following:

x s(k+llk) = (k+l,k)x s (k~k) + & (k+l,k)x S(k~k), (3.7)

A
x(k+llk) = (k+l,k)x S(k 1k) - &(k4-l,k)x s(kik) + u(k), (3.8)

Z S(k+llk+l) = (k+l,k/'x (kik) -& (k+l,k)x s(k~k) + u(k)

- K d(k+l)y (k+llk). (3.9)

where

y(k+ljk) yk)-y(k+llk)

- M(k+1)6 (k+l,k)x S(kik) + v(k+l). (3.10)

With respect to the estimation error covariance matrix derivatioi., the

chief difference between the optimal filter and the suboptimal filter

considered here is that xsatisfies the original system homogeneous

state equation and the x does not. As we shall see, considerable

complexity results.



14

-~x $.1

F x

-VY
-cu

L~J
031C

C-51

-0 00

a.. -.-

1 41

0 "

-J J

00C

z -0

-Z 0 ~ LL. 0 4CoA U- 0J0I 
4.<.80-

I Of-4

L n -J



15

We first compute the a priori suboptimal estimation error covariance

matrix

P5 (k+llk) = E x(k+ljk)x'(k+Ik4

After a great deal of manipulation of (3.7)-(3.10), we obtain

P s(k+ljk) = (k+l,k)P s(kjk)P'(k+l,k)

+ H (k) + & (k+i,k)S (k) b (k+l,k)

- (k+l,k)1.R(k) -S(k)]&6'(k+l,k)

- { (k+l~k)liR(k) -S(k)]56'(k+l~k 41. (3.11)

If second-order effects are neglected,

P s(k+llk) = k+l,k)P (k~k)V(k+l,k) + H(k)

- (k+l,k)[R(k) - S(k)36P'(k+l,k)

- J (k+l~k)[R(k) - S(k)J6V(k+1~k)}4 (3.12)

We see that P s(k+llk) is of the same form as the a priori estimation

error covariance matrix for the optimal filter plus some correction

terms due to the change ini modeling.

To compute P s(k+lik+l), rewrite x s(k+ljk+l) as

;x(k+1 jk+l) = ' k+l1k) - K (k+1)7 klk 313
ss d sklk (.3
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and y (k+ljk) as

75(k+1tk) M(k+l)x (k+l~k) + N(k+1)Z (kik) + v(k+l). (3.14)

PS (k+llk+l) = E x(k+I jk+l);x' k+l jk+14

Notes thts(~~k1 n 5 k+l1k) are of the same form as in the opti-

mal filter. Thus, the first fewv steps of the derivation are the same

as in the optimal filter. The similarity stops when one tries to use

the equation for the gain to simplify the equation to the form of

equation (2.6). The problem is that the gain is computed using P d, not

P s, which of course is due to the su'Loptimization of the filter.

After some routine manipulation,

P s (k+lk+l) = P (k+11k) - Kd (k+1)EIM(k+l)P(k+llk)

+ N (k+) P (k1k) P(k+l,k)]

-. Kd[H(k+l)P,(k+ljk) + N(k+l)P,(klk) (k+l~k))}

" K d(k+l){(k+l)P s(k+l 1k)M' (k+l)

+ M(k- l) d (k+l,k)P s(k tk)N - (k+l)

+ [M(k+l) d (k+l,k)P s(kik)N' (k+l)]t

+ N(k+1)P S(;-'k)N' (k+l) + V (k+l4 KA (k+l) . (3. 15)

In order to completely specify PS, recursive relations for R(k) and S(k)

must be found , where

R(k) = E[x(k )xS'(kjk)]
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R(k) = hk,k-l)[R(k-1.) - S(k-l)'][I + 4(k)L (k, k- 1)

-& (k,k-l)]+ N(k)}'KA(k )] - k,k-l)S(k-l)C. d(k,k-l)

+K Kd(k)M(k)64(k,k-1)]I +~ k,k-l)[R' (k-i)

-S(k-l)][M(k) (k,k-1) + N(k))'K (k) .(3.16)

Ieglecting second-order effects,

S(k) ==X Ex(kjk)X"'(kjk)3

+ (k,k 1) (k-) 1 (k )(k-)+Nk]K()

+ §d(kk-l)S(k-)[M(k)§(k,k-1) + N(k)]'K' (k)
d ' d d

+ Kk+ (k-l)[M(k)§(k,k-l) + N(k)]

+ M'(k)]' + [M(k)§(k,k-l) + N(k)J]iR(k-1)

- S(k-1)] 4' (k,k-1)M' (k) - {1iI(k)§(k~k-l)

" N(k)][R(k-1) - S(k-)]6P (k,k-l)M' (~

" V(k )] KA(k). (3.17)

In order for the above equations to be uniquely specified, initial values

of R(k) and S(k) are required. Since X(010) is usually chosen as zero,

R(O) and S(O) are null matrices.
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From the implementation viewpoint, note that computation of P isS

not required in the actual operation of the filter. However, evaluation

of P can be used to study the performance of the suboptimal filter com-S

pared to the performance of the optimal filter. In some cases, when

the actual state trajectory is known in the simulation study, evaluation

of P may not be necessary, only a comparison of the optimal estimates5

and the suboptimal estimates with the actual state trajectory may be

sufficient to study the relative performance of the filters.

B. Performance Analysis of a Suboptimal Filter Using

A Simplifed Gain Computation

If the original model is used, but a suboptimal gain computation

is used for some reason or another, the P(kjk) given by equation (2.6)

is not the covariance matrix of the a posteriori estimation error. The

a priori covariance matrix of the estimation error is still given by

equation (2.9) and the covariance matrix of the measurement estimation

error is still given by equation (2.4).

Let P (k+llk+l) be th, covariance matrix of the a posteriori esti-S

mation error resulting from using a suboptimal gain, K s(k+l) = K(k+l)

+ 6K(k+l), in the optimal filter equations.

P (k+ljk+l) is given by

P (k+llk+l) = E[ s (k+lIk+l)X'(k+l k+l)]S 5 S

= LI - K (k+l)M(k+l)]P s(k+lk)[lI - K (k+l)M(k+l)]'
S K S

- K(k+l)P (klk)4' (k+l,k)[l - K (k+l)(k+l)i'



19

S (k+l) P (klk)§' (k+l,k)[I K- (k+l)M(k-+l)i}

+ K (k4-1) [N(k+l) P s(k 1k)N' (k+l) + V (i.+1)]K' (k+l). (3.18)

Expanding (3.18) and neg1'-cting second order effects,

P S(k+llk+l) = [I - K(k+1)M(k+l)'-'P s(k+llk)tII - K(k+l)M(k+l)]'

+ K(k+l)P s(k~k)V~ (k+1,k)[I -K(k+l)M(k+l)]'

- K(k+lJP (kjk)V'(k+1,k)III -~,lM~~)'

+ K(k+l)liN(k+1)P s(kjk)N' (k+l) + V(k+1) iK' (k+1)

- K(k+l)[M(k+1)P s(k+llk) + (k+l,k)P s(ktk)N'(k+1)

+ N(k+l)P s(kjk)V'(k+1,k)] + 64(k+l)Q s(k+l)K'(k+l)

+ K (k+l) [Q s(k+1) - M(k+l)P s(k+ll)M' (k+l)]1lK' 'l)

As indicated above s and P s(k+1lk) are given by

Q s(k+1) =M(k+l)P s(k+llk)M"(k+1) + v(k+l) + N(k+1)P s(klk)N'(k+l)

+ M(k+l) (k+t,k)P s(kik)N' (k+1)

+ [M(k+l) (k+1,k)P s(klk)N' (k+1)]' (3.20)

and

P k~l) (~lkP k k (k+l,k) + 11(k). (3.21)

The above equations can be used to study how suboptimal a particu-

lar filter is and hiow sensitive the quality of the estimates are to

various methods of computing the gain matrix.
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C. Definition of a Performance Index

By using the results of section A, we can obtain the perturbation

in the estimation error covariance matrix for a particular design model.

Likewise, using the results obtained in the last section, the perturba-

tion in the estimation error covariance matrix can be computed from a

knowledge of the perturbation in the optimal gain due to a suboptimal

gain computation. Knowledge of these quantities may be useful, but

their magnitude does uot give a complete picture of how the overall

performance of the suboptimal filter compares to the optimal filter.

The information needed is contained in the value of the cost functional

for the two cases.

The cost functional considered here is the mean squared estimation

error. Let J(k) be the 7alue of the cost functional for the optimal

filter and J (k) be the value of the cost functional for the suboptimals

filter. From the optimality of J, we know that Js (k) Z J(k) for all k.

Then

3(k) -tr ~x(klk)x'(klk)}

- tr P(klk)

j (k) = tr E (Kk): s (kk)

- tr P(kk) + tr 6P(klk).
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Define a performance index p(k) as

J (k) - J(k)

p(k) = J (k) (3.22)

tr 6P(klk)
tr P(k k)

We see that p for fixed k has the properties that it is zero and a

minimum when the suboptimal filter is actually optimal and is a mono-

tonically increasing function o. tr 6P; i.e., the more suboptimal a

filter with respect to the given cost functional, the larger the value of P.

This performance index could be used to evaluate the relative

performance of a suboptimal filter compared to the optimal one and to

evaluate the relative sensitivity of the optimal filter to modeling

variations.
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IV. SUBOPTIMIZATION OF THE DELAYED-STATE FILTER

In this chapter, we derive a suboptimal delayed-state filter based

upon a method originated by Joseph [121 and Pentecost [221 The basic

idea is to transform the original system into a collection of smaller

subsystems. Optimal estimatioa is then performed on each of the sub-

systems. An estimate for the total state vector is then reconstructed

frm the estimates of the subsystem state vectors. This estimate is

suboptimal since the subsystem estimators are unable to make full use of

the information available regarding the total state, because such infor-

mation is distributed among the subsystems. In practice, the estimates

of the subsystem state vectors are not ne ded to reconstruct the total

system state vector estimate; only the subsystem gain matrices are

needed.

For convenience, we repeat the total system model equations as

giv..n in chapter II:

x(k+l) = '(k+l,k)x(k) + u(k)
(4.1)

y(k+l) = M(k+l)x(k--l) + N(k+l)x(k) + v(k+l).

The previous assumptions about this model made in Chapter II are

assumed here also.

rLet n. be the dimension of the j subsystem, where .n n and
3 =

r is the number of subsystems. Let m. be the dimension of the jth

subsystem measurement vector, ~im m. Define the jth subsystem state
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vector . and the j th subsystem measurement vector it by

(k) = C.x(k)

(4.2)

Ti(k) = Djy(k)

where the linear transformations C. and D. are n.xn and m.xm respec-
3 3 3 3

tively and have maximal rank. We choose C. and D. to be time-invariant
3 3

to avoid any more complexity in the filter than necessary.

At this point, we could, by sheer brute-force, proceed to design

the optimal subsystem estimator as in the design of the optimal estima-

tor for the total system. However, we will take a simpler route by

manipulating the subsystem equations into the form of (4.1) and then

make use of the results already available in the appendix.

From (4.2), we approximate x and y by

x(k) = C+ F (k)
.3.3 (4.3)

y(k) = Dq.T(k)

where the superscript plus denotes the pseudo-inverse; i.e.,

+ J 1+ C'.(C.C,)-

Premultiplying the first equation of (4.1) by C. and the second

equation by D. and substituting in (4.2) and (4.3), we obtain

.(k+l) = C. (k+l,k)C+ (k) + C.u(k)

J J i(4.4)

1(k+l) = D.M(ki-I) + = (k+l) + DjN(k+I)+ (k+ =  vkl• J )C+. )C+~)+Dvkl



Denoting 1K, M., NV u, and vj by

(k+l,k) = Cj (k+l,k)C+

M (k+l) = D.M(k+I)C +.

N (k+l) = DjN(k+l)C. (4.5)

u.(k) = C.u(k).3 .3

v. (k+l) = D.v(k+l)
.3 .3

we see that the subsystem equations are of the same form as (4.1).

(4.6)

Tj(k+l) = Mj (k+l) j (k+l) + N (k+l)§ i(k) + v (k+l)

Now that the subsystem equations have been put into the proper form,

it is a routine matter to apply the results of Brown and Hartman [7] to
.th

each subsystem. For the j subsystem, the optiml delayed-state filter

equations are

Q (k) = M (k)P (kik-l)MI(k) + V (k) + N (k)P (k-Ik-l)N!(k)

+ M.(k): (k,k-I)P (k-ljk-l)N(k)

+ [M.(k). (k,k-l)P(k-llk-l)N'(k)]' (4.7)

K.(k) = [P.(klk-l)M (k) + 4j (kk-l)P (k-I k-l)N(k)]Q.l(k)

(4.8)

Pi (kk) = P (kjk-l) - K (k)Q (k)K'.(k) (4.9)
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A A A A

g.(klk) = g.(kik-1) + K.(k[ ji(k) - Mj (k) j(klk-1) - N.(k) .(k-lk-1)]

(4.10)

A A

.(k+l Ik) = j (k+l,k)j i(kjk) (4.11)

P. (k+lIk) = j (k+l,k)P (kIk) j (k+l,k) + H. (k) (4.12)

w h e r e V (k ) E v ( k ) v '( k V ( k ) D

and

We assume that the estimate of the total system state vector can

be reconstructed from the estimates of the subsystem state vectors by

the relations

r
A

I(klk-l) F $(k lk-l) (4.13)

j=l

r

x(klk) = F. (klk) (4.14)

j=l

where the F. and C. must satisfy

r

I F.C. = (4.15)

j=l

in order that the total state vector is reconstructed fr.jm the subsystem
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state vectors.

From (4.14) and (4.10), we have

r r

x(klk) F (k k-1) + F.K (k)D [y(k) M(k)x(klk-.1)

j = j=l

N(k)x(k-1Ik-l)]
r

Sx(klk-) +I Fj Kj (k)Dji y(k)

j=l
A A (4.16)

- M(k)x(klk-1) - N(k)x(k-llk-1)] (

A comparison of (4.16) and (2.15) shows that the partitioned-state

estimation method implies that

r

K(k) = I FjKj (k)D (4.17)

jzl

It is now obvious from equations (4.16) and (4.17) that estimates

of the subsystem state vectors are not needed in order to estimate the

total system state vector. With the estimator now in the form of (4.16),

the constraint (4.15) is no longer needed.

A A
Note that .(010) = D.x(0 0) and

( A A
P.(010 =E () - G6(00)][ (0) (01O)]

= C.P(00)C'. (4.18)

Thus, the suboptimal fLIter requires the same initial conditions as the

optimal filter. A schematic diagram of the suboptimal filter is given
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in Fig. 3.

Summarizing the suboptimal filtering equations, for j=l,...,r,

A
x (kik-l) =(k,k-l)X(k-lk-l) (4.19)

C.(k,k-l) = Cj (k,k-)C+ (4.20)

P (klk-l) = (k,k-l)P.(k-ljk-l)k'(k,k-1) +H (k-l) (4.21)

Q (k) = M.(k)P (kik-i)M(k) + V (k) + N (k)P (k-Ik-l)Nj(k)

" Mj(k)C(k,k-l)P (k-l k-l)N.(k)

+ [M. (k) (k,k-l)P (k-ljk-l)N; (k)]? (4.22)

K. (k) = [P. (kjk-1)' (k) + C.(k,k-l)P (k-lIk-1)Nj(k)]Q.1 (k)

(4.23)

P (klk) = F. (kik-1) - K (k)Q (k)K;(k) (4.24)

(klk ) = x(klk-) + K(k)[y(k) - M(k)x(klk-I)

- N(k)x(k-I[k-l)] (4.25)

where K(k) is given by equation (4.17).

Equation (4.24) is true only if the gain used is the optimal gain
th

for the j subsystem and is computed exactly. If K. is not computed3

exactly (truncation errors may occur), it is not guaranteed that

P.(k~k) will remain positive definite. To avoid this problem, it is3

desirable to have an alternate way of computing P. (klk) which will

assure positive definiteness. The required form is
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P .(klk) {.(k,k-l) - K.(k)[M.(k) (k,k-l) + N .(k)]3)P j(k-1Ilk-l)-

{.(k,k-J.) - KWM()kk- + Ni()1

+ K(k)V(k)K(k) + H(k-1). (4.26)

By using the above equation and equation (4.21), the a priori subsystem

estimation error, covariance matrix can be eliminated from equations

(4.22) and (4.23) for Q. and K. respectively. Q is then given by

Q (k) = M. (k) (k,k-l)P (k-lIk-l)§!(k,k-l)M (k)

+ M.(k)I i(k-1)M3(k) + V.(k) + N.(k)P.(k-ljk-l)N (k)

+ M (k)'§ (k,k-l)P.(k-lIk-l)N.(k)
j 3 3 .3

+ [M (k)§ (k,k-_)P (k-lk-l)N!(k)]' (4.27)

and K. is given by

K (k) = §,.(k,k-l)P.(k-lik-l)[M(k) .(k,k-1) + N.(k)]'
i.. I3 .3 .3 .3

+ H (k-l)M (k) Ql I(k) . (4.28)

Notice that the computations in equations (4.21)-(4.24) involve

matrices of order less than mxm and nxn. The partitioning of the sys-

tem into subsystems is not unique. The optimum partitioning for a par-

ticular problem at this time must be found by trial and error and phys-

ical intuition. If the subsystem state vectors are not cross-coupled

with any other of the subsystem state vectors, either through the plant

or measurement equations or through the noise processes, then this
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scheme would be optinmal, as indicated by Aoki [11 and Pentecost [22).

At the present time, there is no optimal method for choosing the F

matrices. Usually, they are taken to be C+

As an aid in evaluating the reduction in the amount of required

computation achieved by the use of the above results, it is useful to

compute the number of multiplication and addition operations required

in one step by the filters.

Assuming the inverse is computed using the gaussian elimination

method, the number of multiplication operations M and the number of
0

addition operations A required in one step by the optimal filter equa-0

tions given in chapter II are given by

M = 2n 3 + n2 (1+7m) + nm(5+4n) + m 3  (4.29)

A = 2n 3 + 7n2m - 3nm + 3nm2 + (m 2 +2) - n. (4.30)0

The number of multiplication operations M and the number of additions

operations A required in one step by the suboptimal filter equationss

(4.17), (4.19)-(4.25) are given by

r

Mn 2 +5nm + [2n + 6n.m + 8n m 1 + njnm + m J (4.31)
j=l

r

A = m(3n+l) + [2n3 + 8n2m1  +njm (4m -7)

j=l

- n. + njm(mj+n-l) + m. + M. (4.32)
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As an example, consider a sixteen-dimensional system with a scalar

measurement. Three subsystems are chosen, two are three-dimensional and

one is twelve-dimensional. The scalar measurement is used in all three

subsystems. Then

M = 10385 M = 56150 S

A = 9971 A = 50110 S

As a consequence of using the partitioned suboptimal filter, a 56% re-

duction in the number of multiplication operations is achieved and a

50% reduction in the number of addition operations required in one

step. The substantial reduction in the multiplication operations is

particularly significant since multiplication operations are much more

costly in terms of computer execution time than addition operations.

The question of how suboptimal this method is may be investigated

in the following manner. Let K be the gain matrix of the optimal

delayed-state filter. Then the perturbation of this optimal gain

incurred by using the above partitioning scheme is

r

6K(k) = F.K (k)Dj - K(k). (4.33)

j=l

6K thus calculated can then be -sed in the performance analysis equations

of chapter III to calculate j±, the performance index, p is a relative

measure of how suboptimal a particular partitioning is for a specific

system and can be used to evaluate several partitionings to determine

which one is the closest to being optimal (least suboptimal).
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V. AN EXAMPLE: NNSS INTEGRATED INERTIAL/DOPPLER-

SATELLITE NAVIGATION SYSTEM

In order to illustrate how the preceding results may be applied,

we consider an inertial navigation system augmented by the Navy Naviga-

tion Satellite System (NNSS), also referred to as the Transit System.

In the next three sections, we will present the model of the system and

derive expressions for the noise covariance matrices. After some gener-

al comments on the method u ed to simulate the system, we will present

the results of two performance analyses for modeling changes and the re-

sults on the performance of a partitioned-state suboptimal filter.

For our example, we consider a terrestial (low-altitude) vehicle

using a strapped-down inertial system, with the vertical channel being

implemented by other than inertial means. A geocentric latitude-longi-

tude coordinate system is used.

Such an inertial navigation system is capable of providing global

navigational information, but suffers from long term "drift" errors. To

compensate for this "drift," another source of information may be used to

periodically correct the inertial system. That is the role of the NNSS

here. The role of the Kalman filter is to integrate the two systems in

an optimal fashion. A schematic representation of the integrated system

is shown in Fig. 4.

Periodically the vehicle receives a message signal from one of the

satellites. The message signal gives the satellite's position and other
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miscellaneous information. Due to the relative velocity between the

satellite and the vehicle, a doppler shift in the signal frequency oc-

curs. Using the satellite's position and a measurement of the accumu-

lated doppler count over a time interval (approximately twenty seconds),

information about the inertial system's errors can be inferred. Since

the measurement process is noisy and the errors in the inertial system

are inherently random, a Kalman filter can be used to obtain a better

estimate of the inertial system errors than could be obtained by using

the raw measurement.

As we shall see in Section B, a delayed-state filter is required

because the measurement vector (a scalar in this case) depends upon the

number of doppler counts accumulated over the interval between sample

times. The fact that the measurement vector is a scalar makes this sys-

tem particularly attractive from a computational point of view since the

Q matrix is a scalar and taking its inverse is a trivial operation. On

the other hand, a delayed-state filter, which places greater demands on

the computational ability of the on-board computer than the usual Kalman

filter, is required.

A. The Plant Model

The error model for the inertial system may be described by two

basic equations, Pitman 23]. The two equations are

+ (1) x = (5.1)
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2
6R + 2w X 6R + w X 6R + W X w X 6R = 6a - 4 X a -w oR (5.2)

where all the above variables are three-dimensional vectors, the cross

x indicates the vector cross product, and

0I= - 60,

= platform coordinate frame error vector,

60 = computer coordinate frame error vector,

w = platform angular rate vector with respect to an inertial

frame of reference,

: = gyro "drift" rate (bias) error vector,

6R = radial position error vector,

6a = accelerometer "bias" error vector,

a = sensed "acceleration" vector (including both inertial and

mass attraction acceleration),

6Rtan = tangential component of R to the earth,

2
wO = gm/R, gm is the mass attraction acceleration and R is the

nominal magnitude of the earth's radius vector plus the

nominal altitude of the vehicle.

Equation (5.1) describes the "twenty-four hoar dynamics" in terms

of the difference between the angular error in the orientation of the

platform frame and the computer frame. Equation (5.2) describes the

position error propagation, the "eighty-four minute" or "Shuler" dynamics.

The third component equation in (5.2) will not be used since that channel

is to be implemented by other means, such as by an altimeter.
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Since the system is a strapped-down system, the gyro drift errors

and accelerometer biases given in the platform frame must be transformed

through a continuously updated direction cosine matrix into the computer

frame to be used in equations (5.1) and (5.2).

The random process driving functions in the plant equations (5.1)

and (5.2) are the gyro drift rate and the accelerometer bias. To fit

the form required by the Kalman filter, these processes must be gaussian

white noise with zero mean. By physical observation, this is obviously

riot true. The standard method for circumventing this difficulty will be

e-ployed. We consider the components of C and 5a to be correlated noise

processes driven by gaussian white noise with zero mean.

More specifically, we assume that the components of e and 6a are

first order Markov processes of the form

x + x =f f(t) (5.3)

where f(t) is unity white noise. Augmenting the state with six addition-

al states due to C and 6a, the plant model is now in the form required by

the Kalman filter.

In addition, three more state variables are needed to complete the

model. One is needed for the vertical position error, one for the verti-

cal velocity error, and one for the doppler count bias error.

The vertical velocity error and the count bias error will be modeled

by an equation of the form of (5.3). The model is one which can be made

to fit a variety of situations and implementations by adjustment of the
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parameters a and . For very small B, the process approaches a true bias

and for very large the process approaches white noise. The amplitude

is adjusted by a.

The vertical position error is taker to be the integral of the ver-

tical velocity error and is thus a nonatationary process.

The coordinate frames to be used are defined as tollows:

X, Y, Z = earth-fixed frame with X through the north pole

and Z through the intersection of the equator and

the Greenwich meridian,

x, y, z = geocentric navigation frame wJth x north, y west,

and z up

x', y' , z' = body-mounted instrument-cluster reference frame

with x' nose, y' left wing, and z' through the

roof.

The relationships of the three frames are shown in Fig. 5.

For convenience, we replace 6R and 6R yin equation (" z) by theirx y

angular equivalents in terms of 60X and 6y

6R = R6e
x v

6RY = - Rbe6,y

and define state variables as follows:

Xl x
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Fig. 5. Relationship betw~een the XYZ, xyz, and x'y'z' coordinate frames
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x9 = x o/W0

X 0 = C y,/ o

x z

x a13 6a,/Rw2

x = 6a,/Rw2

14 = 6z 0/RW

x -8j/RW2
15 z 0

x =16 6N

where 6N is the doppler count bias error. Note that the state variables

have been chosen to be dimensionless quantities.

After a great deal of algebraic manipulation, we obtain the follow-

ing nonzero elemlents of the A matrix (Brown [5)):

a1,2 = z

a1,3 y

a1,9 W 0 Cxx'

al,10 =w C,1 o10y'
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a1,11 w0C z

a 2, -w

a2,3 - x

a2,9 w0 CXZl

a2 ,1 0  =w 0C y

a2,11 w a yz'

a3 ,1  =w

a 3,2 w

a3,9 w0C q

a3,10 w0 CZY,

a3 ,1 1  w w0 C Z

a4,5 w0

a - z 1 1 (2 W2 2
5,1 7? i; T xy-u

0 0 0

a ww w
5,3 Rw 0 Rw 0At +w xiz
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AV 1 1 0 2 2 2)
a5 , 4  At Rw°  ow+0 ,

-2AR
a5,5 AtR

wR A (wzR) w w
a5,6 Rw RwAt +  w

a = 2w z

Zw y AWX
5, z

5,8 w wAto 0

a 5512 w 0C Xa5,12 = . ° CX ,

a - C,

a5,13 w 0C

a5,14 0 0 C yz ,

a5,15 2x

a6,7 
0 0

AVz 1 2 2 2aAt +  (w [+wy-Wo

7,2 w x y 0

wxR A(wxR) w w
a7,3 Rw Rw At w

0 0 0
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w zR A(w zR) w w
7 ,4 TT - U At +w

a a7,5  2w z

-1,6 -Rwt w
o a

a -- 2AR
7,7 R~t

a7,8  (. 6 t W
0 0

a7,12 w 0 C t

a7,13  w w0 C x,1

a 7,4 w0C f

a7,14 a w

a8,15 - 0

a9,9 2

a10,10 3~
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a11,11 = 4

a12 ,12 = 5

a13,13 = 6

a14,14 P7

a15 ,15 = "

a16 ,16 - 08

where C denotes the direction cosine between the subscripted coordinate

axes, A denotes the incremental change in the indicated quantities over

the time interval At = tk+1 - tk, and average values over the At interval

are implied for the other quantities. Assuming a small At compared to

the time constants of the dynamics, average values are used so that an

exponential routina can be used to compute the transition matrix.

Notice that the A matrix is in the general partitioned form:

a11 a 1 2

(8 x 8) (8 X 8)

A=

0a 22

(8 x 8) (8 X 8)

diagonal

I
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T:e state variables were ordered so as to simplify the computation of

the transition matrix.

B. The Measurement Model

in this section, we derive the measurement model for the integrated

NNSS. The approach is the same as in Brown [5] and Brown and Hagerman £61.

The equation for the ideal count observed at the receiver for the

time interval (tk-l, tk) is given in Stansell F30],

N(k) = PFAT + -G [p(k) - p(k-l)] , (5.4)
G

where

AF = fixed offset in transmitter and local oscillator

frequencies (32 kHz),

4T = time interval between timing marks zeferred to the

satellite time base,

G = wavelength of the local oscillator,

= range from the observer to the satellite.

A number of sources of error are present in the count measurement

process. Pirst, oscillators are not so stable that the local oscillator

offset can oe maintained at 32 kHz indefinitely, so noic unknown bias

effect will be present. Secondly, refraction due to the atmosphere af-

fects the rf signal from the atellite. This is particularly true when
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the satellite passes low over the horizon. Lastly, jitter in the count-

ing electronics introduces additional random error.

These sources of error in the count measurement will be considered

as the sum of a correlated process and an uncorrelated process. ihe

correlated part we model as a first order Markov process and designate

as state variable x1 6. The uncorrelated part we assume to be the gaus-

sian white noise process in our measurement model. Thus, the measured

count is given by

I

N (k) = AFAT + -- [p(k) - p(k-l)] - 8N(k) - v(k). (5.5)

If the inertial system were without error, the computed count

would be given by equation (5.4). But since the inertial system is in

error, the range computed will be in error by some amount. Thus, the

computed count is given by

1

N c(k) = AFAT + x 1 [p(k) + 6p(k) - p(k-l) - 6p(k-l)] (5.6)
c G

where 6p is the error in the range due to the position error in the in-

ertial system. We assume that the position of the satellite is known

perfectly.

Taking the difference between N and N , we obtain

c m

y(k)= (k)-Nm = [6(k) - 6p(k-l) + N(k) + v(k).

(5.7)

II
I
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To obtain the form required by the delayed-state filter, we must

examine the Ac terms. The expression for 6p is given in Brown and

Hagerman '7] as

I (R-R C )AR + (RP C )'50 - (RR C )60 1 (5.8)
Ss zz z s yz x s xz y

S 
s

where R is the radial distance from the center of the earth to the vehi-

cle, R is the radial distance frow the center of the earth to the satel-
S

lite, and C , C and C are the direction cosines between thexzS  Yzs ZZs

navigation axes and the satellite z axis which coincideswith the radial5

vector between the center of the earth and the satellite.

The range is computed from

2 22=(R2+R2-2 RR C )2 (5.9)S s zz
s

Noting that 6qx = x4' 6;y = x6, 6RziR = x8, and 8N = 16' the mea-

surement model now fits the required form,

y(k) = M(k)x(k) + N(k)x(k-l) + v(k). (5.10)

where

M(k) = 0 0 0 b(k) 0 c(k) 0 Ra(k) 0 0 0 0 0 0 0 1],

N(k) = F0 0 0 -b(k-l) 0 c(k-l) 0 -Ra(k-l) 0 0 0 0 0 0 0 0],

a(k) =- 1"R - R C ]
G?  s zzs'1

b (k = _RR C ,
C G S yz s
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and

c(k) - . [RR C ]
G s xz s

The model for the system is now complete. We turn now to the de-

rivation of the noise covariance matrices to be used in the filter.

C. The Noise Covariance Matrices

The derivation of the nonzero terms in the H matrix is a straight

forward exercise in classical random process theory. The value of the

V matrix (a scalar) is based on physical intuition and simulation results,

Brown [5].

By inspe-ction, the first three diagonal terms are white noise con-

stants due to gyro drift.

h _ 2h1,1 = 1

2
2,2 2

h2
3,3 3

Similarly, the fifth and seventh diagonal terms are white noise

constants due to accelerometer bias.

2
5,5 5

h 2
7,7 7

=I
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T'he state equation for the first gyro drift component, x9, is

M = - 2 x9 (t) + V f(t) (5.11)

Solving equation (5.11) over the time interval (tk, tk+l),

at

x9 (k+l) = exp(-8 At) x9 (k) + C exp(-O T) f(t-T) dT (5.12)
2 2 2

0

where At = tk+I - tk. The h9,9(k) term is the covariance of the response

of x9 (k+l) due to f(t) between tk and tk+1; i.e.,

At At

9,9~ST ffU0t- f r2)

At At

Jo 2 cxp[- 2( T+s)]E[f(t-r) f(t-s)] dTds

0 r
44,t A t

= w3 2 1 - exp(-2 At)]

where i s used here to denote the DiraL delta function.
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Similarly:

h10,10(k ) = 2 3[I- exp(-2 P 3At)I

hl! W(k) = a [I - exp(-2 04At)]

h = 2-h 12,12W = 05 LI - exp(-2 5 At)

h1 3 1 3 (k) = 2 [ - exp(-2 06At)]

h (k)= cr2 [I - exp(-2 07 t)
h1 4 , 1 4 (k) = 7 - 7

h1s,1(k) = a [1 - exp(-2 0IAt)]

h 1 6 , 1 6 (k) = 02 [I - exp(-2 08 At)]
8

The state variable x8 is merely the integral of x15 , thus

02 2 Ar A

h,8 (k) = c f1 [I - exp(-O1 T)][l - exp(-8 1 s)]6(T-s) dTds

2 2

- 2 f At - 211 - exp(-5lAt)] + [i - exp(-20lAt)]}•

Si
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The ony cross-covariance terms which are present are h8,15 and

h15,8 which are equal.

h8 ,15(k) = h15 ,8(k)

At At

= 2o o 
2l w [ l  -  ex p (-1, )[ exp ( -' 1

s)  6 ( s )  d d s

Of course, values of the g's and the 's iust be determined. In

our simulations, we shall asstm=e values which we presume correctly char-

acterize the random processes. We will base our choice of values on

simulations of this system.

D. Ge-.eral Comments on the Simulation Study

A few comments are in order concerning the values of the statistical

parameters used in our sirulations and how they were obtained.

The value -)f P(010) is based upon the discussion in Brown [5] on

establishing initial c,-nditions for the optimal filter for the .ystem

considered here. The actual numerical values are the result of a trial

and error simulation study of the performance of the optimal filter using

iCuIal flight tost data. The optimal filter performed "best" when the

chosen p irameters were used. Upon that basi;, the selected values are
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assumed to correctly characterize the random processes involved for the

purposes of this study.

The values in the initial covariance matrix are chosen in the xyz

navigation coordinate system and are then referred, via a linear trans-

formation into the body-mounted ;oordinate system, in which the actual

initial alignment of the system takes place.

In the xyz coordinate system, the initial estimation error covar-

iance matrix is a diagonal matrix P (010) with

, x2

P, = 800 sec 9, 9 x /10- seW

P*,2 = P1[,1 P1[O,IO = P9,9

= 100 minPP*

2
Pt,4 = 100/R (R in feet) P12,1 2 = 400 sec

P* = 0.01/w2R2 (sec- ) 23 = *
5,5 P313 P12,12

•* *p*

6,6 = P4.4 14,14 =P12,12

= Pg 5  
P*5 1 5 = 0.04/w2R 2(sec- )2

P8. = 40000/R
2  P16,16 = 106

8
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The linear transformation relating the state in the xyz coordinate

system to the state in the x'y'z' coordinate system is given by

- I- - r 

I 2

where F is the three by three direction cosine matrix relating the angu-

lar orientation of.the body-mounted coordinate system with respect to the

navigation coordinate frame.

Cxx  C ,y Cx z "

I-= Cyx Cyy Cyz

Cz x  Czy Czz

The initial estimation error covariance matrix to be used in the

filters is given, in the x'y'z' coordinate system, by

P(010) = TP*(OIO)T'.

The variances and inverse time constants used to characterize the

random processes in the system model are as follows:

2=2
accelerometer biases: o = 400 sec

1/15 hr
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gyro biases: 0 e2 = 0.09 (h

P = 1/15 hr "I1

initialized at o = 0.03 deg/hr

vertical velocity error: 
a2 = 0.25 fec) 2

= 0.18 sec-

altitude error: initialized at a = 200 ft

doppler count bias: = 106

= 10-T7 sec
"-

2 2 2

u5 =u 7  1 knot2 /hr

The measurement noise covariance matrix V(k) was set to the constant

value of 1600. #

To compare the performance of the different filters, true error

curves have been plotted with the estimates. The true error curves were

obtained by tracking the vehicle from ground stations. Due to the pro-

prietary nature of this data, the plots have been normalized.
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E. Design Model Based on a Simplified Direction Cosine Matrix

In order for the A matrix in the system model to be evaluated at

each stage, the direction cosine matrix relating the body-mounted co-

ordinate system rmust be updated at each stage. Under the assumption of

level flight, the computation of this matrix becomes considerably sim-

plified. We discuss here the results of using a dejign system model

based on this assumption.

Define the roll angle a as the rotation of the body-mounted system

about the x axis, the pitch angle as the rotation of the body-mounted

system about the -y axis, and the yaw angle y as the rotation of the

body-mounted system about the -z axis. The direction cosine matrix P-

relating the body-mounted system to the navigational system becomes

(see, e.g., Pitman L231)

cacy cocsy - sasocY -sasY - casocy

-- l -csy cacy + ssoss -cy

L so s~CL 0COLsOsY

where c and s indicate the cosine and sine of the indicated angle, re-

spectively,

If level flight is assumed, the only angular displacement which oc-

curs between the body-mounted system and the navigational system is in

Vw The resulting simplified direction cosine matrix is
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cy sy 5

FdI = -sy cy 0

0 0

Using I in the evaluation of the A matrix results in a design

model which is used in the delayed-state filter as in chapter 3, section

A. We call this model design model 1.

Figure 6 shows the normalized estimates of the latitude error of the

optimal filter and the suboptimal filter resulting from this design model

as a function of the flight time in Greenwich mean time. For comparison,

the normalized true latitude error curve is shown also. Simklarly, the

longitude error estimates are shown in Fig. 7.

Upon comparison of Fig. 6 and 7, we see little change in the filter's

performance is introduced by the assumption of level flight. This result

was found to be true for the estimates of the other state variables also.

The design model resulting from tnis simplification is by itself

not much simpler than the original model. However, this simplification

would probably be made in conjunction with other modifications in the

original model such as those to be discussed in the next section. To

assess the effect of each change in the model on the filter performance,

the changes must be made one at a time in order to determine which one

is at fault if poor performance results.



u56

uuo
ja

uj G.

II

0 Z0

4

-r4

-,dr

- 130

0=0
_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ 4U



57

MJ

Ku

.. I
-j~

LJ ).

cg0

4U 1 0

0
r-4

in t

0 - -

_____ 42

144

'LI

GC- LO- 013,1- 21
YQWW3 30n1119M11 WWON



58

F. Design Model Based on Simplified Dynamics in th :-evel Channcls

We present here the results of using a design model biated upon stw-

plification of the dynamical. equations for the error in he two level

channels.

The basic equation used to derive the two level channel equations

for the original model is equation (5.2).

26R + 2w x 6R + w X6R+W X(w X 6R)= 6a -X a - w Ro Rtan"

A number of simplifying assumptions on this equatien seem reasonable

due to the nature of the v hicie and typical flights.

If w is set equal to zero (Aw < < w in a At interval), the centripital
0

acceleration is neglected, and R is considered to remain constant (AR < < R

in a At interval), then equation (5.2) becomes

+ 2wX 6R = 6a - X a - 2
o tan

and the two level channel equations become

x5 = - 0)ox 1 - wox4 + 2zx7 - w0ECyxx12 + CyyX 1 3 + C yx 1 4] - zxl5

= _ woX 2 - 2wzx5 - wox6 + wo[Cxx Oxl2 + CXl3 + Cxzxl4 - y 1 5
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By repiazing t> el.--rc:. of the fifth and seventh roWs of the A

matrix o tl- original werdzl with te coeffi'ients of the above ,.tioul

.'e obXalr, the design model A marriv. We call the resultir model c,.%

mo!el 2.

"he results of using desigit model 2 in tae filter crp ,hcw.,

Fig. 8 and Fig. 9. There is little significant difference in the esti-

mates of both the latitude and longitude error. In fact, the suboptimal

estimates appear to be a little better than the optimal ones. At first

thought, this would be cause for concern, until it is noted that these

results are only one sample out of a possibly large ensemble of sam'ples.

The only conclusion to be drawn is that the above assumptions do not

significantly alter the performance of the filter, at least for flight

trajectories similar to the one simulated.

The results of incorporating the simplifications of design model 1

and de',ign model 2 in one model are shown in Figs. 10 and 11. The effect

was nearly the same as using only one or the other of the simplifications;

in fact, the performance was slightly better in tha longitude channel.

With efficient programming, a significant reduction can be made in

the computational effort required to comp:ute the transition matrix with-

out significant degradation in the filter's performance by incorporating

the simplifications of design models I and 2. This is important because

the transition -matrix must be computed at the end of each 20-second in-

terval throughout the duration of a flight.
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G. Suboptimization Using the Partitioning Method

Attempts were macde to apply the partitioning method of chapter IV

to the above system for two choices of partitions. Although achieving

a considerable reduction in the computational requirements, both choices

resul ed in unsatisfactory performance of the filter. Both the estimator

and the estimation error covariance matrix equations diverged rapidly

from the optimal filter results by several orders of magnitude after the

satellite pass period. During the pass period when measurement data is

available, transitory oscillations were observed.

In the first partitioning that was tried, the system was partitioned

into three subsystems. Subsystem one contained xl, x4 , and x , i.e.,

level channel one and the coupled psi variable. Subsystem two contained

x2, x6, and :7' i.e., level channel two and the coupled psi variable.

The third subsystem contained xl, x2, x3, x8, . . . , x1 6, i.e., the

twenty-four hour dynamics, the altitude channel, and the first order

Markov instrument noise processes. The measurement y was used in all

three subsystems.

The second partitioning tried consisted of two subsystems. The first

subs'stem contained the first eight state variables and x1 5 and x1 6. The

second subsystem contained x9,. . * , x14, the instrument noise processes.

The measurement y was used in both subsystems. This choice is equivalent

to modeling the gyro biases and accelerometer biases as white noise. Due

to the form of the measurement matrices M and N, the second subsystem
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state variables are estimated as the initial estimate projected through

the transition matrix.

The divergence problem may be due to one or all of several factors.

First, the nature of the form of measurement for this system may not be

well suited to suboptimization by this method. Information about sixteen

state variables must be derived from a scalar measurement. This raises

the question of whether or not the observability properties of the sy.item

place a constraint on the chAce of partitioning or, more fundameutally,

whether or not the partitioning method is applicable to the system at all.

However, both the observability of the above system and the relationship

of observability with the partitioning method remain unexplored problems.

A second important consideration is the fact that only two parti-

tionings were tried. It is believed that the successful application of

the method to this system is highly dependent on the proper choice of

partitioning.

A third factor, although not a dominant one, to consider is the

error due to the digital computations. In any study of this sort,

truncation error and other numerical errors will occur to some degree.

The simulation of this system is particularly vulnerable since many of

the matrices involved are ill-conditioned and a great number of matrix

operations are reqtired.

As a final consideration, in the derivation of the partitioning

method, the pseudo-inverse of the C.'s was used to approximate the total

system state in order to de-couple the subsystem model from the total
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system model. For many cases this may be a very poor approximation.

Por example, the first two subsystems of the first partitioning are

only three-dimensional and the total system is sixteen-dimensional.

Three of the total system state variables are approximated with the sub-

system state variables and the remaining are approximated as zero for

all time. As indi ated above, it may be possible to improve this approx-

imation by a different choice of partitioning.
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VI. CONCLUSIONS

Many attempts to solve the excessive computational problem of the

Kalman filter may be categorized into two classes of suboptimizations.

The first class may be characterized by a simplification in the system

model that is used in the filter equations. The second class takes

advantage of a suboptimal gain computation with the other filter equa-

tions remaining the same as for the optimal filter. In chapter III,

we presented a performance analysis for both of the above classes of

suboptimization for the delayed-state Kalman filter. The derivation of

a suboptimization of the delayed-state filter, which belongs to the

second class, was presented in chapter IV.

In chapter V, the results of a simulation study of the performance

of an integrated inertial/doppler-satellite navigation system were pre-

sented. It was found that for two types of model simplifications the

suboptimal filter performed very well in comparison to the optimal fil-

ter. On the other hand, attempts to apply the results of chapter IV

to that system were not very successful.

Several problems remain unsolved. Further experimentation might

result in a partitioning which results in a satisfactory performance by

the partitioned suboptimal filter for the above example.

A simulation of the performance analysis equations and use of the

performance index was not attempted. 'owever, the performwace index

was computed for the partitione ? filter and confirmed the other indica-

tions that the filter was not performing satisfactorily. Concerted
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effort may result in the reduction of the performance analysis equations

for modeling changes to a simpler and more practical computational form.

Optimization of the partitioned filter by the choice of the F.J

matrices with respect to the mean-squared estimation error appears

possible. However, this would result in r additional recursive equations.

Their dimensionality would be less than that of the total system state

and the amount of total computation required should still be less than

that required by the optimal filter. The partitioned filter would still

be suboptimal with respect to the optimal one, but should have improved

performance over the partitioned filter presented in chapter IV.
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VIII. APPENDIX:

DERIVATION OF A KALMAN FILTER WITH DELAYED-STATES AS OBSERVABLES

We present here a derivation of t:he recursive equations for the

optimal delayed-Etate Kalman filter. The results of which were first

obtained through the work of Brown and Hartman [7]. Our method is not

the only approach that could be used. The derivation is presented

merely to make more rigorous and complete the results in the preceding

chapters.

The optimality of the filter is a consequence of a fundamental

theorem in estimation theory due to Sherman [26] which we will state

without jroof (see Deutsch [8]). We will then state a more specialized

result which will be used in our derivation.

Let x(k) be an n-dimensional random variable with m-dimensional

measurements y(l), . . . , y(j). The conditional probability distri-

bution function of x(k) given y(l), . . . , y(k) is

F[ly(l), . , y(j)] = P[x(k) §Iz(j)]

where P is a suitable prooability measure and z(j) is an mj-dimensional

vector whose components are yl(1), . . . , ym(1), . . . , yl(j), . .

Ym(j).

We wish to estimate x(k) based only on the measurements y(l), . . .

y(j). We denote this estimate by x(klj). We are concerned htre only with
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the filter problem when j = k. We have the smoothing problem when j > k

aud the prediction problem when j < k.

We denote the estimation error by

3'(kIj) = x(k) - X(klj).

We would like x(klj) to be zero. When it is not, we assign a penalty or

loss for an incorrect estimate. We do this by specifying an admissible

loss function Lri(kjj)] which has the following properties:

1. L is a non-negative function from Rn to &.

2. L(O) = 0, where the first zero denotes the zero n-vector.

3. L[3b(kIj)] L[ia(kIj)], whenever

gg3%(kjj)] > g[Za(klj)], where g is a non-negative convex

function from Rn to R.

4 . L[7x(k Ij)] = 1Z-Z(k I; ) ] .

An estimate is optimal if it minimizes L.

We now statc the fundamental theorem.

THEOREM 1.

If L is an admissible loss function and F[g§z(j)1 is:

a. Symmetric about its mean

b. Convex for all :4

then the optimal estimate is

x(klj) = E (k)!z(j)}
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The following theorem, which we also state without proof (see,

e.g., Meditch [181 or Kalman r13]), is a direct consequence of Theorem 1.

It is this result upon which the Kalman filter equations are based.

THEOREM 2.

If only the first and second moments of the stochastic processes

{x(k),k = 0, 1, . 4 and {y (i), i = 1, 2, . . . , 4i are known, then

the optimal estimate for all admissible loss functions is the linear

estimate

x(klj) = E x(k) + P xz' {z(i) - Ez(j)4

where P is the n x mj cross-covariance matrix of x(k) and z(j) and

P is the covariance matrix of z(j).zz

The model of our dynamical system was given in chapter II. We

repeat it here for convenience.

x(k+l) = @ (k+l,k)x(k) + t.(k) (A.1)

y(k+l) M(k+l)x(k+l) + N(k+l)x(k) + v(k+l) (A.2)

The assumptions placed upon this modelin chapter II are required here

also.

From Theorem 1, the optimal estimate at k+l given measurements

y(l), . . . , y(k+l) is

x(k+llk+l) = E x(k+!)Iz(k+l) . (A.3)

For any gaussian zero-mean random variables x, y, z (Papoulis F211

or Meditch L18 1)

E+xY~z} = Efxjy,_z}



_ _ _ F -73

where z2= z - Ef I+j~ and

Applying these fo2mlas to (A.3),wefind tha t -(A)

where

y(k+llk) = y(k+l) - +{Y(k+l)jz(k)}

Letting y(k+llk) be the optimal estimate of the measurement y(k+l)

given measurements through time k, +e have y(k+llk) = y(k+l) y(k+llk).
A

Expanding y(k+llk), noting that v(k+l)isndpdeto l).,ykl

y(k+llk) EfM (k+l)x(k+1)+Nk~~~) + v(k+!)Iz(k)}

A A
-M(k+l)x(k+lIk) +N (k+l)X(klk) (A.5)

Noting that X(k+llk) = §(k+l,k )A(k 1k), equation (A.4) becomes

A A.
x(k+ljk+1) = (k+l,k)x(klk) + +ix(k+1)ly'(k+l Ik)l (A.6)

Since x(k+l) and y(k+lik) are zero mean and gaussian, we have as a

consequence of Theorem 2

Efx(k+1)IY(k+ljk)} = Pxy -' (k+1Ik) (A.7)

where P - is the cross-covariance matrix of x(k+l) and 7(k+1 1k) andIY
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P -.1 is the covariance matrix of the measurement estimation error

P E x (k+1) ' (k+ I k))

P,- E= E{(k+l Ik)y' (k+1Ilk)

Defining K(k+1) = P we have

E{2c(k+1)ly(k+llk)} =K(k+1) [y(k+1) - M(k+1) (k+,k)X'(kj1c)

-N(k+1)xc(kik)]

=K(k+1)[M~(k+1) (k+l,k)x(k) + N(k+1)x(k)

+ v(k+1) - Mk+1)~k+1,k)x(kjk)

- N(k+1)x(klk)]
i(k+I1)r(k+1)~k+i,k) + N(k+l1](kjk)

+ K(k+1)v(k+1). (A.8)

Thus, the form of equation (A.6) which corresponds to equation (2.7) in

chapter II is

x(k+llk+1) = X"(k+1) + K(k+l)Cy(k+1) - X+)(k+1Ik)

- N(k--1)(kjk)3 (A. 9)

To evaluate K~k+l),

=E I (k+l Ik) _ X(k+llk)][M(k+l)k(k+llk)

+ N (k+1)SE (k Ik) + v (k+l)]1'}

= P(k+llk)M'(k+1) + ' (k+1,k)P(kjk)N'(k+l) YA.iO)

where we have used the fact that v(k+1) is independent of x(klk) and

P(k+lIk) by definition is E+(k+ljk)x(k+ljk)}.
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Evaluating P--,
yy

P- E{y (k+l Ik)y'(k+1t k)

=E{EM(k+1)X-(k+ljk) + N(k+?)x(kIk) + v(k+l)][M(k+l)x(k+lIk)

+ N(k+1)x(kik) + v(k+l)IV

=M(k+1)P(k+l 1k)MW (ki-1) + V(k-1) 4+ N(k+I)P(klIk)N'(k+l)

+ M(k+l) (k+l,k)P(kjk'N' (k+l)

+ [M(k~il)(k+l,k)P(kik)N' (fk-l)]' (A. 11)

Upon comparing (A.11) with equation (2.4) we see that P- is Q(k+l).

Thus, the optimal gain matrix K(k+l) is 
given by y

K(k+l) = [P(k+llk)M'(k+l) + (k+l,k)P(kjk)N'(k+l1Q 1 (k+l)

(A. 12)

where Q(k+1) is given by (A ) The inverse will always exist since

V(k+l) is assumed positive definite.

P(k+lik) is given by

P (k+l I Q = Ej:x(k+l IkQ XI(k+l Ik)}

= (k+l,k)P(kjk)Y"(k+l,k) +11(k) (A.13)

Expanding Z(k+llk+l), we obtain

x(k+llk+l) = [I - K(k+l)Mc(k+1)'x(k+lIk) - K(k+l)N.(k+l)Z(klk)

- K(k+l)v(k+l).

Noting that +)c (k+llk)Z'(klk)} = (k+l,k)P(k~k),
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P(k+1 Jk+l) = E x(k+l Ik+l)x'(k+1l~~

=P(k+llk) - K(k+l)MOI+)P(kFllk)

- [K(k+l)M(k+l)P(k+ljk)]'

- K(k+l)N(k+l)P(klk)1' (k+l,k)

- [K(kc-il)N(k+lwP(kjk)P'(k+l,k)]'

+ K(k+lA:M(k+l)P(k+lk)4' (k+l)

+ M(k+l) (k+l,k)P(kjk)N' (k+i)

" N(k+l)P(klk)N' (k+l) + V(k+l)]K' (k+l) (A.14)

After some manipulation of (A.14) and the use of equation (A.13)*

P(k+llk+1) = P(k+llk) - K(k+l)Q(k+I)K'(k+l). (A.15)

Note that Z(klk) is a gaussian zero mean process and, hence,

P(010) = Efx (0)x(04 since x(0I0) = + x(0)1 = 0.

This completes the derivation of the optimal delayed-state filter.

The data,, beginning at time k =1, are processed by cycling through

the recursive equations (A.13), (A.11), (A.12), (A.15), and (A.9) with

initial conditions P(010) = Efx (0)x'(0)} and x(01O) = 0.



77

XI. REFERENCES

1. M. Aoki, Optimization of Stochastic Systems, New York, New York:

Academic Press, 1967.

2. M. Aoki, "Control of large scale dynamic systems by aggregation,"
Preprints, 1967 JACC (Philadelehia, Pennsylvania), pp. 178-186.

3. M. Aoki and J. R. Huddle, "Estimation of the state vector of a linear
stochastic system with a constrained estimator," IEEE Trans. Automatic
Control, vol. AC-12, pp. 432-433, August 1967.

4. L. D. Brock and G. T. Schmidt, "Statistical estimation in inertial
navigation systems," August 15-17, 1966 AIAA/JACC Guidance and
Control Conf. (Seattle, Washington), pp. 544-558.

5. R. G. Brown, "Analysis of an integrated inertial/doppler-satellite
navigation system. Part 1. Theory and mathematical model," Technical
Report ERI-62600, Engineering Research Iastitute, Iowa State University,

Ames, Iowa, November 1969.

6. R. G. Brown and L. L. Hagerman, "An optimum inertial/doppler satellite
navigation system," Navigation, vol. 16, No. 3: pp. 260-270, Fall 1969.

7. R. G. Brown and G. L. Hartman, "Kalman filter with delayed states as
observables," December 9, 10, 1I, 1968 Proc. of the NEC (Chicago,
Illinois), vol. 24, pp. 67-72.

8. R. Deutsch, Estimation Theory. Englewood Cliffs, New Jersey:
Prentice-Hall, 1965.

9. R. E. Griffin and A. P. Sage, "Large and small scale sensitivity
analysis of optimum estimation algorithms," IEEE Trans. Automatic
Control, vol. AC-13, pp. 320-329, August 1968.

10. H. Heffes, "The effect of erroneous models on the Kalman filter
response," IEEE Trans. Automatic Control, vol. AC-II, pp. 541-543,

.July 1966.

11. J. R. Huddle and D. A. Wismer, "Degradation or linear filter perform-
ance due to modeling error, " IEEE Trans. Automatic Control, vol. AC-13,
Ho. 4, 421-423, August 1968.



78

12. P. D. Joseph, "Sub-optimal linear filtering," Interoffice
Correspondence 9321.4-653. Space Technology Laboratories, Inc.
Redondo Beach, California, December 5, 1963.

13. R. E. Kalman, "A new approach to linear filtering and prediction
problems," Trans. ASME, J. Basic Engrg., vol. 82, pp. 35-95,
March 1960.

14. L. J. Levy, "Performance analysis of suboptimal Kalman estimation,"
Memorandum, R & D 48-616-M, A. C. Electronics, Div. General Motors,
Milwaukee, Wisconsin, October 25, 1967.

15. D. G. Luenberger, "Observing the state of a linear system," IEEE
Trans. Military Electron., vol. 8, no. 2, pp. 74-80, April 1964.

16. T. Nishimura, "Error bounds of continuous Kalman filters and the
application to orbit determination problems," IEEE Trans. Automatic
Control, vol. AC-12, pp. 268-275, June 1967.

17. Y H. McClamarock, "Evaluation of suboptimality and sensitivity in
0ontrol and filtering processes," IEEE Trans. Automatic Control,
AC-14, no. 3, pp. 282-285, June 1969.

18. .. S. Meditch, Stochastic Optimal Linear Estimation and Control.
New Yorl., New York, McGraw-Hill, 1969.

19. H. A. Meyerb, "Aircraft navigation by satellite," Inst. of Nav. J.,
vol. 16, pp. 435-448, October 1963.

20. N. E. Nahi, Estimation Theory and Applications. New York, New York:
Wiley, 1969.

21. A. Papoulis, Probability, Random Variables, and Stochastic Processes.
New York, New York: McGraw-Hill, 1965.

22. E. E. Pentecost, "Synthesis of computationally efficient sequential
linear estimators," Unpublished. Ph.D. dissertation, UCLA, Los
Angeles, California, May 17, 1965.

23. G. R. Pitman, e' . Inertial Guidance. New York, New York: Wiley,
1962.

24. C. F. Price, "An analysis of the divergence problem in the Kalman
filter," IEEE Trans. Automatic Control, vol. AC-13, no. 6,
pp. 699-702, December 1968.



79

25. S. F. Schmidt and J. S. Lukesh, "Case study of Kalman filtering
in the C-5 aircraft navigation system," June ?4, 1968 Case Studies
in System Control: Proc. of a Conf., IEEE/IEEE Automatic Control
Group (University of Michigan, Ann Arbor, Michigan), pp. 59-109.

26. S. Sherman, "Non-mean-square error criteria," IRE Trans. Inform.
Theory, vol. IT-4, pp. 125-125, 1958.

27. K. W. Simon and A. R. Stubberud, "Reduced order filter," Int'l.
J. Control, vol. 10, no. 5, pp. 501-509, 1969.

28. C. S. Sims and J. L. Melsa, "Specific optimal estimation,"
IEEE Trans. Automatic Control, vol. AC-14, no. 2, pp. 183-186,
April 1968.

29. H. W. Sorenson, "On the error behavior in linear mi-aimum variance
estimation problems," IEEE Trans. Automatic Control, vol. AC-12,
no. 5, pp. 557-562, October 1967.

30. T. A. Stansell, Jr., "The Navy navigation satellite system:
description and status," Navigation, vol. 15, no. 3, 229-243,
Fall 1968.

31. L. A. Zadeh and C. A. Desoer, Linear System eor. New York,
New York: McGraw-Hill, 1963.



uncl~assifi~d DOCUMENT CONTROL DATA - R & D Ucasfe

Engieerng eserchInstitute Ucasfe

SUBOPTIMIZATION OF A KALMAN FILTER WITH DELAYED-STATES AS OBSERVABLES

A C)ESCPIP TIVf NOTES~nw o report dnd*,ntIh,-,id.,ti%,

Technical Report
-$ AU THORiSl eFt,,,t nfinle, middle insital. Ial nI iame

Terry B. Cline
C. James Triska

6 REPORT DATE 70 OA 4 O AE .N OF RF

October 1970 80 3O1 OOFPGS. O RF

80 CONTRACT OR GRANT N.O 9o. ORIGINATOR'S REPORT NUMBER(S)

Themis Contract No.
NOOO-14-68-A-0162 ISU -ERI-AMES-77000

9h OTHE R REPORT NOIS) (Any Other numbers that may be assigned
thi's repo rt)

10 DISTRIBUTION STATEMENT

Unlimited

11 SUPPLEMENTARY NOTES 12 SPONSORING MILITARY ACTIVITY

Office of Naval Research, Code 461
_________________________________ jDepartment of the Navy
__________________________________ Arlington,_Virginia__22217

11 ABSTRACT

The computational requirements of the Kalman filter may become excessive
when the measurement model includes a connection with both the present state
and a previous state. Three aspects of this problem are studied. A performance
analysis is presented and a performance index is defined as an aid in evaluating
the performance of two classes of suboptimal filters which may be used to solve
this problem. The two classes are suboptimality due to modeling variations and
due to alternate gain algorithms. A suboptimal filter is derived which belongs
to the second class. The simulation of a proposed integrated inertial/doppler-
satellite navigation system is performed to study the performance of filters
belonging to both of the above classes.

DD IF'O, 1473 (A[ )Unclassified Casfcto
GS/ T *R'it 

Clasiicaio A-310



Security Cla;ltzfcation

14 LINK A LINK S LINK C

KEY WORO$ 
ROLE WT ROLE WT ROLE WT

Navigation

Kalman filter

Navigation satellite

inertial navigation

Suboptimal Kalman filter

DD (BAoC ..1413 (-C-)
/N 0101-807-6e2l Security Classification A-31409


